53 research outputs found

    Assessing environmental controls on the distribution of long-chain alkenones in the Canadian Prairies

    Get PDF
    Long-chain alkenones (LCAs) have been used for decades to reconstruct quantitative sea-surface temperature records, but they also have a great potential for paleotemperature reconstructions in lacustrine settings. Here, we investigated how the presence and abundance of LCAs in surface sediments from 106 lakes varied with environmental conditions in lakes of the northern Great Plains (Canadian Prairies) in southern Saskatchewan, Canada. Consistent with preliminary research, we found LCAs in 55% of surveyed lakes, with mean concentrations of 143 μg/g dry sediment, but very high concentrations (up to 2.3 mg/g dry sediment) in 7% of lakes. Statistical analyses indicate that salinity and stratification play key roles in determining LCA presence and abundance supporting previous research in Spain and the northern Great Plains, USA. Overall, the alkenone unsaturation index (U37K) was not correlated significantly with average summer water temperature, probably because the timing of maximum LCA production occurs during the spring season. We conclude that improved seasonal sampling is required within the study lakes to better identify the timing and habitat of haptophyte production, and allow development of environmental temperature reconstruction tools

    Improving the paleoceanographic proxy tool kit – On the biogeography and ecology of the sea ice-associated species Fragilariopsis oceanica, Fragilariopsis reginae-jahniae and Fossula arctica in the northern North Atlantic

    Get PDF
    A long-term perspective is essential for understanding environmental change. To be able to access the past, environmental archives such as marine and lake sediments that store information in the form of diverse proxy records are used. Whilst many analytical techniques exist to extract the information stored in these proxy records, the critical assessment and refinement of current methods in addition to developing new methods is crucial to improving our understanding. This study aims to improve our knowledge on diatom species used for reconstructing ocean surface conditions, especially temperature and sea ice variability over time. We define the distribution and the relationship to sea surface temperature (SST) and sea ice concentrations (SIC) of the species Fragilariopsis oceanica, Fragilariopsis reginae-jahniae and Fossula arctica using diatom training sets from the northern North Atlantic. We further assess the effect of separating these species compared to grouping them under F. oceanica, as has been done in the past. Our results suggest that while these three species share similarities such as the preference for stratified waters induced by sea ice or glacier meltwater, they also exhibit heterogeneous distributions across the northern North Atlantic, with individual optima for SST and SIC. This also affects quantitative reconstructions based on our data, resulting in lower SST and higher SIC estimates when the species are separated in the surface sediment and down-core diatom assemblages.Peer reviewe

    Development of a regional glycerol dialkyl glycerol tetraether (GDGT)-temperature calibration for Antarctic and sub-Antarctic lakes

    Get PDF
    A regional network of quantitative reconstructions of past climate variability is required to test climate models. In recent studies, temperature calibration models based on the relative abundances of sedimentary glycerol dialkyl glycerol tetraethers (GDGTs) have enabled past temperature reconstructions in both marine and terrestrial environments. Nevertheless, to date these methods have not been widely applied in high latitude environments due to poor performance of the GDGT–temperature calibrations at lower temperatures. To address this we studied 32 lakes from Antarctica, the sub-Antarctic Islands and Southern Chile to: 1) quantify their GDGT composition and investigate the environmental controls on GDGT composition; and 2) develop a GDGT–temperature calibration model for inferring past temperatures from Antarctic and sub-Antarctic lakes. GDGTs were found in all 32 lakes studied and in 31 lakes branched GDGTs (brGDGTs) were the dominant compounds. Statistical analyses of brGDGT composition in relation to temperature, pH, conductivity and water depth showed that the composition of brGDGTs is strongly correlated with mean summer air temperature (MSAT). This enabled the development of the first regional brGDGT–temperature calibration for use in Antarctic and sub-Antarctic lakes using four brGDGT compounds (GDGT-Ib, GDGT-II, GDGT-III and GDGT-IIIb). A key discovery was that GDGT-IIIb is of particular importance in cold lacustrine environments. The addition of this compound significantly improved the model's performance from r2=0.67r2=0.67, RMSEP-LOO (leave-one-out) = 2.23 °C, RMSEP-H (h-block) = 2.37 °C when applying the re-calibrated global GDGT–temperature calibration to our Antarctic dataset to r2=0.83r2=0.83, RMSEP-LOO = 1.68 °C, RMSEP-H = 1.65 °C for our new Antarctic calibration. This shows that Antarctic and sub-Antarctic, and possibly other high latitude, palaeotemperature reconstructions should be based on a regional GDGT–temperature calibration where specific compounds can be identified and included to improve model performance. Finally, downcore temperature reconstructions using the new Antarctic brGDGT–temperature calibration were tested in sub-Antarctic Fan Lake from South Georgia providing a proof of concept for the new calibration model in the Southern Hemisphere

    A Water Framework Directive-compatible metric for assessing acidification in UK and Irish rivers using diatoms

    Get PDF
    Freshwater acidification continues to be a major problem affecting large areas of Europe, and while there is evidence for chemical recovery, similar evidence for biological recovery of freshwaters is sparse. The need for a methodology to identify waterbodies impacted acidification and to assess the extent of biological recovery is relevant to the EUWater Framework Directive, which requires methods to quantify differences in biology between impacted and unimpacted or reference sites. This study presents a newWFD-compliant metric based on diatoms Diatom Acidification Metric: DAM) for assessing the acidification status of rivers. A database of 558 benthic diatom samples and associated water chemistry data was assembled. Diatom taxa were assigned to one of 5 indicator classes on the basis of their pH optimum, assessed using Gaussian logistic regression, and these indicator values used to calculate a DAM score for each site using weighted averaging. Reference sites were selected on the basis of their acid neutralising capacity (ANC) and calcium concentration, and a regression model developed to predict expected DAM for each site using pH and total organic carbon (TOC) concentration. Site-specific DAM scoreswere used to calculate ecological quality ratios ranging from≥1, where the diatom assemblage showed no impact, to (theoretically) 0, when the diatom assemblage was indicative of major anthropogenic activities. The boundary between ‘high’ and ‘good’ status was defined as the 25th percentile of Ecological Quality Ratios (EQRs) of all reference sites. The boundary between ‘good’ and ‘moderate’ status was set at the point at which nutrient sensitive and nutrient-tolerant taxa were present in equal relative abundance. The methodology was evaluated using long-term data from 11 sites from the UK UplandsWaters Monitoring Network and is shown to perform well in discriminating naturally acid from acidified sites

    Responses of benthic invertebrates to chemical recovery from acidification

    Get PDF
    Prosjektleder: Heleen de WitThe report provides an assessment of biological recovery from acidification in freshwater environments in Europe. The report consists of two parts, a regional data analysis based on an international dataset of biological and water chemical records, and a collection of national contributions on monitoring and assessment of biological recovery in different countries. The regional analysis showed that 47% of all included rivers (21 sites, for the period 1994-2018) and 35% percent of all lakes (34 sites, for the period 2000 to 2018) showed significant increases in species richness. Correlations between species diversity and water chemical components (ANC, pH, SO4) were found, supporting that the biological responses were related to chemical recovery. Additionally, the composition of functional traits in rivers underwent significant changes over time. Both parts of the report demonstrate ongoing biological recovery from acidification in European acid-sensitive freshwater environments.Norwegian Ministry of Climate and Environment, United Nations Economic Commission for Europe (UNECE)publishedVersio

    UK Upland Waters Monitoring Network data interpretation 1988-2019

    Get PDF
    This report is the latest in a series of occasional interpretive reports to Defra, extending back to 1993, that have documented trends in the chemistry and biota of UK Upland Waters Monitoring (UWMN) sites
    • …
    corecore